首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27172篇
  免费   4639篇
  国内免费   2932篇
化学   18040篇
晶体学   255篇
力学   1913篇
综合类   235篇
数学   3692篇
物理学   10608篇
  2024年   34篇
  2023年   586篇
  2022年   668篇
  2021年   854篇
  2020年   1110篇
  2019年   1037篇
  2018年   945篇
  2017年   900篇
  2016年   1318篇
  2015年   1241篇
  2014年   1502篇
  2013年   2042篇
  2012年   2436篇
  2011年   2507篇
  2010年   1703篇
  2009年   1643篇
  2008年   1786篇
  2007年   1553篇
  2006年   1416篇
  2005年   1219篇
  2004年   895篇
  2003年   701篇
  2002年   594篇
  2001年   520篇
  2000年   505篇
  1999年   631篇
  1998年   528篇
  1997年   527篇
  1996年   482篇
  1995年   475篇
  1994年   391篇
  1993年   348篇
  1992年   290篇
  1991年   255篇
  1990年   240篇
  1989年   187篇
  1988年   150篇
  1987年   126篇
  1986年   92篇
  1985年   95篇
  1984年   62篇
  1983年   50篇
  1982年   52篇
  1981年   22篇
  1980年   12篇
  1979年   2篇
  1971年   1篇
  1959年   1篇
  1957年   7篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The large-scale production of ammonia mainly depends on the Haber–Bosch process, which will lead to the problems of high energy consumption and carbon dioxide emission. Electrochemical nitrogen fixation is considered to be an environmental friendly and sustainable process, but its efficiency largely depends on the activity and stability of the catalyst. Therefore, it is imperative to develop highefficient electrocatalysts in the field of nitrogen reduction reaction (NRR). In this paper, we developed a BiVO4/TiO2 nanotube (BiVO4/TNT) heterojunction composite with rich oxygen vacancies as an electrocatalytic NRR catalyst. The heterojunction interface and oxygen vacancy of BiVO4/TNT can be the active site of N2 dynamic activation and proton transition. The synergistic effect of TiO2 and BiVO4 shortens the proton transport path and reduces the over potential of chemical reaction. BiVO4/TNT has high ammonia yield of 8.54 μg·h−1·cm−2 and high Faraday efficiency of 7.70% in −0.8 V vs. RHE in 0.1 M Na2SO4 solution.  相似文献   
102.
103.
104.
A novel organoantimony complex of 6-cyclohexyl-6,7-dihydrodibenzo[c,f] [1,5]azastibocin-12(5H)-yl nitrate ( 2 ) was synthesized and systematically characterized by techniques such as NMR spectra, TG-DSC, and X-ray diffraction. It was found that the complex 2 exhibits relatively strong Lewis acidity (3.3 < Ho ≤ 4.8) and could be employed as a water tolerant Lewis acid catalyst for the synthesis of synthetically valuable benzimidazole derivatives starting from aldehydes and arylenediamines. This catalytic system shows excellent tolerance toward a wide variety of functional groups, such as methyl, methoxyl, fluoro, chloro, bromo, nitro, cyan, trifluoromethyl, 1-naphthaldehyde, furfural and n-butyl, together with facile reusability in 5 times scale enlarged synthesis.  相似文献   
105.
The use of honeybee venom in traditional medicine is increasing due to its unexpected beneficial effects in the treatment of diseases. In this study, a simple and environmentally friendly sample preparation procedure was developed to quantify five biogenic amines—histamine, 5-hydroxytryptamine, dopamine, adrenaline, and noradrenaline—in honeybee venom using high-performance liquid chromatography tandem mass spectrometry. The instrument and sample preparation method were optimized to achieve stable, sensitive, and accurate quantification of the five biogenic amines. The peak purities of five biogenic amines in bee venom were examined using a diode array detector to ensure that endogenous impurities will not interfere with biogenic amines during the chromatographic separation procedure. The correlation coefficient of each compound was higher than 0.998 in the range of 0.5–1000 ng/mL. The limits of detection and quantification of the developed method ranged between 0.09 and 0.17, and 0.3 and 0.59 μg/g, respectively. The average recoveries of spiked biogenic amines with different concentrations were higher than 70.95%, and the intra- and intermediate-day precisions were lower than 7.51% and 10.17%, respectively. The carry-over between each injection and the stability of the target analytes were also evaluated to ensure the effectiveness of this method. The data obtained are presented in various formats, including boxplot, heat map, and principal component analysis diagram, to visualize the differences in the biogenic amine contents of the honeybee venoms from different subspecies. This method hopes to provide the opportunity to distinguish the bee venom produced by different subspecies.  相似文献   
106.
The radical–radical coupling reaction is an important synthetic strategy. In this study, the iron-catalyzed radical–radical cross-coupling reaction based on the decarboxylation of keto acids and decarbonylation of aliphatic aldehydes to obtain valuable aryl ketones is reported for the first time. Remarkably, when tertiary aldehydes were used as carbonyl sources, ketone esters were selectively obtained instead of ketones. The gram-scale preparation of aryl ketone through this strategy was easily achieved by using only 3 mol % of the iron catalyst. As a proof-of-concept, the bioactive molecule flurprimidol was synthesized in two steps by using this strategy.  相似文献   
107.
Layered/two-dimensional covalent organic frameworks (2D COF) are crystalline porous materials composed of light elements linked by strong covalent bonds. Interlayer force is one of the main factors directing the formation of a stacked layer structure, which plays a vital role in the stability, crystallinity, and porosity of layered COFs. The as-developed new way to modulate the interlayer force of imine-linked 2D TAPB-PDA-COF (TAPB = 1,3,5-tris(4-aminophenyl)benzene, PDA = terephthaldehyde) by only adjusting the pH of the solution. At alkaline and neutral pH, the pore size of the COF decreases from 34 Å due to the turbostratic effect. Under highly acidic conditions (pH 1), TAPB-PDA-COF shows a faster and stronger turbostratic effect, thus causing the 2D structure to exfoliate. This yields bulk quantities of an exfoliated few/single-layer 2D COF, which was well dispersed and displayed a clear Tyndall effect (TE). Furthermore, nanopipette-based electrochemical testing also confirms the slipping of layers with increase towards acidic pH. A model of pH-dependent layer slipping of TAPB-PDA-COF was proposed. This controllable pH-dependent change in the layer structure may open a new door for potential applications in controlled gas adsorption/desorption and drug loading/releasing.  相似文献   
108.
Zeolite ZIF-8 has been etched with acid to form microporous ZIF-8-E crystals. These were then introduced into a polyethersulfone (PES) membrane matrix to enhance its CO2/N2 separation performance. Open through pores of size about 100 nm formed in the ZIF-8 crystals allow the ingrowth of polyethersulfone chains, ensuring a reduction in the number of nonselective voids, thereby achieving better interaction between ZIF-8-E and PES. As a result, the CO2/N2 separation performance of the ZIF-8-E/PES membrane increased significantly, showing a CO2 permeability of 15.7 Barrer and a CO2/N2 ideal selectivity of 6.5.  相似文献   
109.
In this work, a mild and transition-metal-free approach for the nucleophilic aromatic substitution (SNAr) of unactivated fluoroarenes with primary aliphatic amines to form aromatic amines is reported. This reaction is facilitated by the formation of cationic fluoroarene radical intermediates in the presence of an acridinium-based organic photocatalyst under blue-light irradiation. Various electron-rich and electron-neutral fluoroarenes are competent electrophiles for this transformation. A wide range of primary aliphatic amines, including amino acid esters, dipeptides, and linear and branched amines are suitable nucleophiles. The synthetic utility of this protocol is demonstrated by the late-stage functionalization of several complex drug molecules.  相似文献   
110.
Remote functionalization reactions have the power to transform a C−H (or C−C) bond at a distant position from a functional group. This Review summarizes recent advances and key breakthroughs in remote fluorination, trifluoromethylation, difluoromethylation, trifluoromethylthiolation, and fluoroalkenylation reactions. Several powerful strategies have emerged to control the reactivity and distal selectivity such as the undirected radical approach, the 1,5-hydrogen atom transfer, the metal migration, the use of distant directing groups, and the ring-opening reactions. These unconventional and predictable C−H (and C−C) functionalization transformations should allow for the preparation of a wide range of otherwise-difficult-to-access alkyl, aromatic, heteroaromatic, and structurally complex fluorides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号